JCS Analytics
JCS Analytics
  • Home
  • About
  • Privacy

JCS Analytics - We are analysts. We Ask. We Automate. We Discover.

Details
By J. Smith
J. Smith
Articles
September 14,2025
Hits: 31
  • Data Analytics
  • Healthcare Data
  • Personalized Medicine
  • Nordic Healthcare
  • Continuing Education

Bridging Data and Healthcare in the Nordics

Personalised Medicine from a Nordic Perspective

I completed Personalised Medicine from a Nordic Perspective through the University of Copenhagen and University of Iceland. The course explored how biobanks (collections of biological samples), health registries, and biomarkers (measurable health indicators) can be used to guide individual care, while also addressing risk communication, data protection, and broader ethical considerations.

For a data analyst, this provides valuable context for how health data is generated and applied, and shows the importance of collaboration between doctors and data scientists. The Nordic countries offer a strong case study: they maintain comprehensive health registries and biobanks, and are leaders in responsible data sharing across sectors. The material is presented in a way that makes these complex topics accessible to a broader audience, not just specialists.

This course was built and launched by two principal collaborators, Sisse Rye Ostrowski, MD, University of Copenhagen and Sædís Sævarsdóttir, MD, University of Iceland. They summed up its importance this way:

“The healthcare system is a wonderful place to be if you’re interested in data and developing algorithms. There are extremely complex data like omics data, register data, and data from wearables with all kinds of measurements you could possibly imagine. So, the healthcare field is the data playground of the future.” - Ostrowski

“We want people to understand the challenges involved and how collaboration and technological innovation is the key to shaping the future of healthcare.” - Sævarsdóttir

Explore the Course: Personalised Medicine from a Nordic Perspective

Details
By J. Smith
J. Smith
Articles
August 30,2025
Hits: 129
  • Python Programming
  • Tableau Visualizations
  • FDA Drug Shortages
  • SQLite Database
  • Healthcare Analytics

Streamlined Drug Shortage Tracking with Python and SQLite

Python and SQLite make drug shortage tracking reliable, efficient, and change-driven.

Abstract

Avoiding redundant outputs and focusing only on real changes makes drug shortage tracking both more efficient and more reliable. Python and SQLite work together to compare new data with existing records, ensuring updates occur only when needed and visualizations remain clear and accurate.

Key Points

  • Direct access to the FDA API reduces manual downloads and processing.
  • JSON normalization integrates smoothly with existing Python cleaning steps.
  • SQLite compares new data with stored records, updating only when changes occur.
  • Tableau visualizations use dynamic titles, color coding, and brand-specific calculations.
  • The approach avoids redundant file creation, ensuring efficient and reliable tracking.

Read more: Streamlined Drug Shortage Tracking with Python and SQLite

Details
By J. Smith
J. Smith
Articles
August 14,2025
Hits: 172
  • Tableau
  • Python
  • CGM Data
  • BGM Comparison
  • Sensor Placement

Aligning CGM and BGM Readings Using Python and Tableau

BGM CGM Alignment

A data-driven look at how well continuous glucose monitor (CGM) readings align with blood glucose meter (BGM) readings—and what it reveals about device performance and sensor placement.

Abstract

Explore how Python and Tableau can be used to evaluate the alignment between continuous glucose monitor (CGM) and blood glucose meter (BGM) readings. By pairing readings within a 15-minute window and analyzing percent differences over time and by sensor location, the project identifies patterns in device performance and helps validate sensor placement.

Key Points

  • Pairing Logic: Python is used to match BGM readings with the nearest CGM reading within a 15-minute window to account for physiological lag.
  • Sensor Location Handling: merge_asof() enables accurate assignment of CGM sensor location data without requiring exact timestamp matches.
  • Data Scope: The analysis uses cleaned BGM and CGM datasets, covering the most recent 90 days.
  • Visualization Design: Tableau dashboards display daily trends, alignment by location, and AM/PM breakdowns, with parameters and filters to support interaction.
  • Application: The workflow highlights how differences in alignment can point to sensor performance issues, placement variability, or expected physiological lag.

Read more: Aligning CGM and BGM Readings Using Python and Tableau

Details
By J. Smith
J. Smith
Portfolio
July 4,2025
Hits: 204
  • 5K@ADA
  • Tableau Visualizations
  • SQLite
  • ADA Race Results
  • Data Workflow Optimization

Adapting the 5K@ADA Race Results Project for 2025

5K@ADA 2025 Race Results

A project’s real value comes from how well it adapts as the data changes.

Abstract

The 5K@ADA race results project has been updated for 2025 with improvements to data storage, cleaning, and visualization. Key enhancements include the use of SQLite for managing multi-year data, SQL-based deduplication, handling of multilingual gender values, and updated Tableau dashboards with year-based logic. These changes improve scalability, accuracy, and long-term usability.

Key Points

  • Integrated SQLite to support multi-year data storage and eliminate reliance on separate CSV files.
  • Shifted deduplication to SQL, improving efficiency and simplifying logic.
  • Added handling for foreign language values in the Gender column during data cleaning.
  • Removed the Name column before export to streamline the dataset and protect privacy.
  • Updated Tableau visualizations to support dynamic year selection and adaptable group labels.

Read more: Adapting the 5K@ADA Race Results Project for 2025

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

Page 1 of 9

Articles

  • Articles

News

  • Novo Nordisk and Valo Health Expand AI-Powered Partnership to Address Cardiometabolic Diseases
  • Denmark’s Gefion AI Supercomputer Powers Innovation and Global Challenges

Portfolio

  • Working with CGM Data: Python, SQLite, and Tableau in a 4-Part Series
  • Visualizing the 5K@ADA Race Results
  • Complex Web Scraping with Python
  • Adapting the 5K@ADA Race Results Project for 2025

Contact Me

Search

End Diabetes Stigma

5K@ADA

5K@EASD

World Diabetes Day

Rochen Web Hosting

Bluesky Social

  • You are here:  
  • Home
 
Copyright © 2025 JCS Analytics. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.